
Exercices chapitre 5 – série 8 - Enoncés

Exercice I

1) Démontrez les relations pour V_{T1} et V_{T2} du comparateur en mode non-inverseur ci-dessous qui a été vu en cours au slide 52.

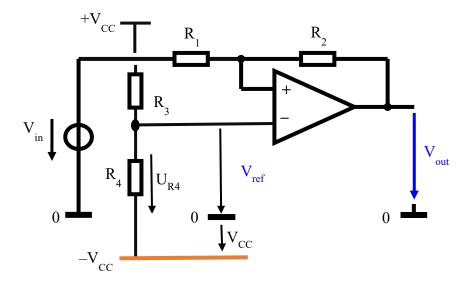
- 2) Expliquez le résultat obtenu si R_1 =0.
- 3) Expliquez le résultat obtenu si R₂=0.

Exercice II.

Le circuit proposé ci-dessous est une variante de l'exercice I.

La tension de référence est réalisée par un diviseur résistif au moyen des résistances R₃ et R₄.

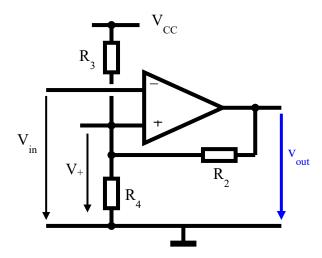
On donne les information suivantes :
$$V_{CC}$$
 = 15 V , R_1 = 10 $k\Omega$ R_2 = 33 $k\Omega$ Pour l'AO: V_{OH} \approx + V_{CC} V_{OL} \approx - V_{CC}


- 1) Déterminez la tension de référence selon deux approches : calcul direct, et superposition.
- 2) Déterminez la caractéristique entrée-sortie, à savoir V_{T1} et V_{T2} et calculez l'hystérèse dans les 2 cas suivants :

a)
$$R_3 = 33 \text{ k}\Omega$$
 $R_4 = 15 \text{ k}\Omega$

b)
$$R_3 = 33 \text{ k}\Omega$$
 $R_4 = 100 \text{ k}\Omega$

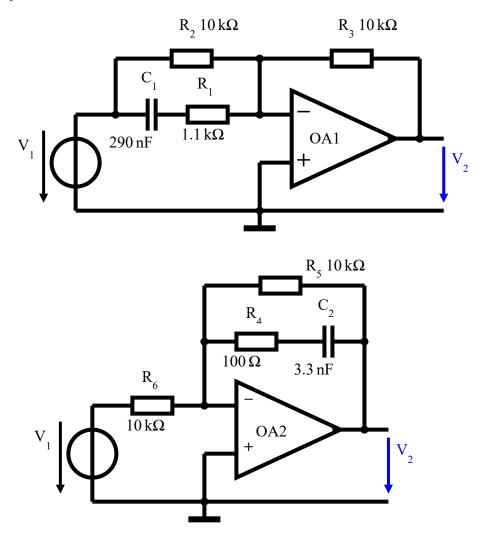
Indication:


La masse est définie par '0V'. Les tensions V_{CC} et $-V_{CC}$ sont définies par rapport à la masse.

Exercice III

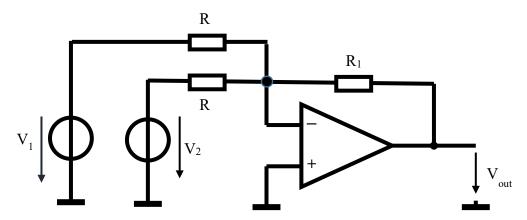
On cherche à déterminer la caractéristique entrée-sortie du circuit ci-dessous qui n'utilise qu'une source d'alimentation unique.

On donne $V_{CC} = +5 \text{ V}$, $V_{OH} = V_{CC}$ et $V_{OL} = 0$, $R_2 = 56 \text{ k}\Omega$, $R_3 = 33 \text{ k}\Omega$ et $R_4 = 18 \text{ k}\Omega$.



- 1) Quelles valeurs peut prendre V_{out} ? De quel type de comparateur s'agit-il ?
- Dans ce cas, quelles sont les valeurs que peut prendre V_+ ? (expressions analytiques et valeurs numériques). *Indication*: 'reconnecter' la résistance R_2 selon le cas étudié.
- 3) Schématisez le cycle d'hystérèse pour V_{out} en fonction de V_{in}.

Exercice IV


Pour les deux circuits ci-dessous:

- 1) Etablir l'expression de la fonction de transfert $H(\omega) = V_2/V_1$ (on nommera respectivement $H_1(\omega)$ et $H_2(\omega)$ pour les circuits OA1 et OA2).
- 2) Représentez les asymptotes en amplitude dans le diagramme de Bode.
- 3) Représentez le diagramme de Bode en amplitude de la fonction de transfert globale lorsque la sortie de l'ampli-op 1 est connectée sur l'entrée de l'ampli-op 2 (V₂ du AO1 connecté à V₁ du AO2 (on enlève donc la source V₁ pour OA2)).
- 4) Concevoir un circuit simple avec un seul ampli op qui donne une réponse ayant le même module |<u>H</u>_{global}| que celui obtenu à la question 3. Pour cela, utilisez les expressions initiales des impédances et remarquez bien que R₃=R₆.
- 5) Qu'obtiendrait-on si on branchait la sortie de OA2 à l'entrée de OA1 ?

Exercice V

On considère le circuit ci-dessous où l'ampli-op a un GBW de 4MHz et un Slew Rate de

1V/micro seconde.

- 1) Quelle sera la fréquence maximale f_{max} si la tension efficace maximale de sortie est de 2 volts? (indication: la tension de sortie est sinusoidale de pulsation ω et de phase ϕ).
- 2) Sachant que pour éviter des déphasages dus à la fonction de transfert intrinsèque de l'ampli-op on doit s'assurer que la fréquence de coupure soit 10 fois supérieure à cette fréquence maximale, déterminez le gain non-inverseur maximal.
- 3) Etablir la relation entre R er R_1 sachant que le gain non-inverseur s'obtient en 'annulant' les sources V_1 et V_2 (et dans ce cas on aurait une source fictive à l'entrée '+').
- 4) Quelle contrainte existe-t-il alors sur les tensions V_1 et V_2 (pensez à la question 1) si on suppose $V_1(t) = \widehat{V_1} \sin(\omega t + \varphi_1)$ et $V_2(t) = \widehat{V_2} \sin(\omega t + \varphi_2)$.